1
0
Files
suit-leds-arduino/Strip.cpp

159 lines
4.4 KiB
C++

#include <Arduino.h>
#include <Adafruit_NeoPixel.h>
#include "Patterns.h"
const uint8_t PROGMEM gamma[] = GAMMA_CORRECTION;
class Strip {
private:
uint8_t pin;
uint8_t num_pixels;
unsigned long last;
uint8_t offset = 0;
uint8_t offset_increment = OFFSET_INCREMENT_DEFAULT;
uint8_t shifting = SHIFTING_DEFAULT;
public:
Adafruit_NeoPixel pixel;
uint16_t wait = 0;
char pattern = PATTERN_DEFAULT;
uint8_t amplitude = 0;
Strip(uint8_t led_pin, uint8_t strip_len) {
pin = led_pin;
num_pixels = strip_len;
last = millis();
pixel = Adafruit_NeoPixel(num_pixels, pin, NEO_GRBW + NEO_KHZ800);
pixel.begin();
}
void set_shift_direction(uint8_t new_shift){
if (new_shift == SHIFTING_FORWARD || new_shift == SHIFTING_REVERSE){
offset = num_pixels - offset - 1;
} else {
offset = 0;
}
shifting = new_shift;
}
void update(void){
unsigned long now = millis();
if (now - wait > last){
last = now;
add_offset();
}
if (pattern == PATTERN_RAINBOW){
rainbow();
} else if (pattern == PATTERN_RED){
red();
} else {
off();
}
pixel.show();
}
private:
void off(void){
for(uint8_t i=0; i<num_pixels; i++){
pixel.setPixelColor(i, pixel.Color(0,0,0));
}
}
void add_offset(void){
/* Increments the offset counter. See get_offset_loc() */
offset += offset_increment;
if (offset >= num_pixels){
offset = 0;
}
}
uint8_t get_offset_loc(uint8_t index){
/* index is the location on the strip where a pixel would be if offset
* was 0. Offset will be from 0 to num_pixels-1 */
if (offset == 0){
return index;
}
if (shifting == SHIFTING_FORWARD){
uint16_t loc = offset + index;
if (loc >= num_pixels){
loc -= num_pixels;
}
return (uint8_t)loc;
} else if (shifting == SHIFTING_REVERSE){
uint16_t loc = num_pixels - offset + index;
if (loc >= num_pixels){
loc -= num_pixels;
}
return (uint8_t)loc;
}
return index; // SHIFTING_STOPPED
}
void set_pixel_rgb(uint8_t index, uint8_t rgb[]){
set_pixel_rgb(index, rgb[0], rgb[1], rgb[2]);
}
void set_pixel_rgb(uint8_t index, uint8_t red, uint8_t green, uint8_t blue){
pixel.setPixelColor(
get_offset_loc(index),
pixel.Color(
pgm_read_byte(&gamma[red / DIM_FACTOR]),
pgm_read_byte(&gamma[green / DIM_FACTOR]),
pgm_read_byte(&gamma[blue / DIM_FACTOR])
)
);
}
void set_pixel_rgbw(uint8_t index, uint8_t rgb[]){
set_pixel_rgbw(index, rgb[0], rgb[1], rgb[2], rgb[3]);
}
void set_pixel_rgbw(uint8_t index, uint8_t red, uint8_t green, uint8_t blue, uint8_t white){
pixel.setPixelColor(
get_offset_loc(index),
pixel.Color(
pgm_read_byte(&gamma[red / DIM_FACTOR]),
pgm_read_byte(&gamma[green / DIM_FACTOR]),
pgm_read_byte(&gamma[blue / DIM_FACTOR]),
pgm_read_byte(&gamma[white / DIM_FACTOR])
)
);
}
void rainbow(void){
uint8_t rgb[] = {255, 0, 0}; // starting RGB value
uint8_t phase_len = num_pixels / 6; // how long each rainbow phase is
uint8_t bump = 255 / phase_len; // how much to increase between pixels
set_pixel_rgb(0, rgb); // first pixel
for (uint8_t index=1; index < num_pixels; index++){
uint8_t phase = index / phase_len; // which section we're in
if (phase % 2 == 0){ // even-index phases add; odd-indexed subtracts
// (r,g,b) index for each phase in order is 1,0,2,1,0,
rgb[(6 - phase + 1) % 3] += bump;
} else {
rgb[(6 - phase + 1) % 3] -= bump;
}
if (index % phase_len == 0) { // this is the transition between phases
// max out the change from the previous phase
if (phase % 2 == 0){
rgb[(6 - phase + 2) % 3] = 0;
} else {
rgb[(6 - phase + 2) % 3] = 255;
}
}
set_pixel_rgb(index, rgb);
}
}
void red(void){
float bump = 255.0 / (num_pixels / 2 + 1);
uint8_t half_point = num_pixels / 2 + 1;
float red = 0;
set_pixel_rgb(0, 1, 0, 0);
//set_pixel_rgbw(0, 0, 0, 0, 255);
for (uint8_t index=1; index < num_pixels; index++){
if (index < half_point){
red += bump;
} else {
red -= bump;
}
uint8_t red_int = (uint8_t)red;
//uint8_t white_int = (255 - red_int + 1) / 2;
set_pixel_rgb(index, red_int, 0, 0);
//set_pixel_rgbw(index, red_int, 0, 0, white_int);
}
}
};